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Using anomaly detection to root out 

fraud has been around for a long time. 

Myriad options are available for financial 

institutions, but they can be costly and 

complex to implement. This paper outlines 

the benefits and limitations of each method 

and examines how a hybrid approach 

can be used to make data anomaly               

detection manageable. 

Watch out for these common anomalies

False positives
In a false positive or “false alarm” scenario, an anomaly 

is detected based on preset rules but turns out to be a 

legitimate transaction. For example, a one-time payment 

of $1 million made to an individual’s account could be the 

result of the sale of an asset from a property inheritance. 

The impact of a false positive can be very damaging to a 

financial institution’s business. It could lead to customer 

friction, increased operational costs and, potentially, 

reputational damage. Organizations need a way to ensure 

that false positives are filtered out from all identified 

anomaly data. 

False negatives
A false negative is the opposite of a false positive. In this 

scenario, no alarms are detected or triggered, and the 

transaction completes successfully, passing through all 

prebuilt security and other defenses. 

It’s difficult to detect false negatives because they bypass 

the organization’s defenses. A commonly experienced false 

negative occurs with manufactured synthetic IDs.

Point 
A data instance that deviates from the dataset’s normal 

pattern can be considered an anomaly. For example, if fuel 

for an automobile costs $51 per day but increases to $501 

on any random day, then it’s an anomaly.

Contextual 
If a data instance behaves anomalously in one context but 

not in another context, then it’s considered a contextual 

— or conditional — anomaly. For example, credit card 

charges are usually higher during Christmas than they 

are the rest of the year. And although high, these may not 

be anomalous because higher charges are contextually 

normal at Christmastime. Conversely, an equally high credit 

card bill at a random non-holiday time of year could be a                 

contextual anomaly.

Collective 
When a group of similar data instances behaves 

anomalously compared to the whole dataset, it’s 

considered a collective anomaly. And while an individual 

data instance may not be an anomaly by itself, when it’s 

part of a collection it could be identified that way. For 

example, an individual debit or credit card charge of less 

than $100 in a day may not be classified as an anomaly in 

a normal scenario, but if it’s part of series of transactions 

totaling $1,000 on that particular day then that charge is a 

potential collective anomaly.

Introduction

Financial institutions leverage anomaly detection for 
a wide range of uses, including:

• Discovering unusual transactions or activities in 
accounts, such as: 

• Sudden surges in transactions in an              
otherwise dormant account  

• Higher value transactions than usually                    
occur in an account 

• Transactions in another country —                             
for example, payments made from a U.S. 
account within another country 

• Other fraudulent activities with a deliberate                
and malicious intent

• Detecting synthetic IDs created via bot factories
• Monitoring watch lists against accounts and transactions, 

such as sanctions and high-risk customers in                       
know-your-customer (KYC) processing stages 

• Identifying the manipulation of claims processing in 
the insurance industry

• Detecting anomalies in invoice processing —                     
for example, value-added tax mismatches or           
pricing and discount variations
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Evaluating commonly used                           
anomaly detection approaches 

It’s important to have a basic overview of anomaly detection 
approaches, as each method has benefits and limitations. 
Depending on the scenario, many methods may apply — and 
in some cases more than one. Factors like implementation cost, 
availability of the right data and lack of domain knowledge to 
interpret the data can play an important role in selecting anomaly 
detection methods. Financial institutions have a lot of options for 
detecting anomalies.

Rule-based detection
Defining rules is probably the simplest and easiest way to implement 
anomaly detection. For example, applying a dollar value or other 
limit, like a single transaction greater than $1 million or a large 
number of transactions in one day greater than a certain value. 

However, the limitations of a rule-based system become apparent 
when more complicated models are needed. For example, it’s 
difficult and inefficient if we try to model abnormal transaction 
patterns relative to the rest of the transactions in a specific user 
segment. So, too, is tracking patterns such as sudden surges in 
transactions across a specific period of time — for example, the 
middle of the night or at month or quarter end.

Another issue with a rule-based approach arises when new anomalies or rules are identified. In these scenarios, the 
new anomaly or rule must be incorporated into the existing detection approach, necessitating constant monitoring and 
updates to the company’s rules engine. In other words, this approach lacks the capability to “learn” from data sets 
and previous transactions. Rule-based systems also fail to identify behavior patterns across transactions and detect 
anomalies based on that information. 

Nearest neighbor detection
This method, also known as distance-based detection, works on the underlying assumption that any new anomaly is 
close to other known anomalies. That is, the closer the new anomaly is to an existing anomaly, the higher the chances 
of it being classified as an anomaly. This nearest neighbor method requires organizations to first model a set of known 
anomalies; in other words, “supervised” learning needs to happen. 

Although much better than a rule-based approach, the nearest neighbor method still has some of the same 
disadvantages — including the inability to “learn” by itself. So, any anomaly detection system leveraging this approach 
must also have behavior patterns fed into it if patterns are to be modeled and the system is to “learn.”

Clustering detection 
Clustering, or density based, is by far one of the most effective detection methods. These systems try to not just identify 
anomalies based on previously fed patterns but also learn new patterns based on the clusters. This makes the approach 
very effective, as it depicts and identifies anomalies in a real-time situation. Patterns can also be used to model behavior 
over a period of time, which both the rule-based and nearest neighbor models lack. 
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Isolation forest detection
Different from both the nearest neighbor and clustering approaches, the underlying principle in an isolation forest is the 
possibility of an individual instance (anomaly) being “isolated” from the rest of the instances. A detailed description is 
available from Fei Tony Liu, Kai Ming Ting and Zhi-Hua Zhou.1  

Efficiency is a concern in any anomaly detection system. The following factors may affect it: 

Domain-specific knowledge 
Using domain-specific knowledge only to improve predictions is a mistake. If the goal is to gather possible causes, this 
will be a problem because predictions have nothing to do with causality. For example, predicting the percentage increase 
in the mortgage applications in a specific sector like agriculture may be linked to weather conditions, government policies 
for that year and/or the economic condition of the country, all of which could be common influencers. 

Dynamic environments 
Another area where anomaly detection is likely to fail is dynamically changing environments — where the definition of 
normal behavior changes. This is quite common in political and business environments, where change is so rapid that it’s 
difficult to create a baseline against which anomalies can be measured. In any changing, dynamic environment, what isn’t 
currently perceived as an anomaly may be classified as an anomaly in the future, and vice versa. For example, a sudden 
change in the political environment in a country, such as a change in leadership, could result in drastic regulatory policy 
changes in the financial industry that in turn could result in changing consumer behaviors — customers withdrawing 
deposits and resorting to other modes of investment due to the fear of uncertainty or housing loans declining at a rapid 
pace due to government policy changes. It’s difficult to model such scenarios and identify real anomalies.

Fully automated anomaly detection approaches and solutions 
Fully automated solutions are limited in anomaly detection. Many of the solutions available in the market are designed to 
reduce manual intervention completely and instead enable straight through processing. The main benefit to this type of 
anomaly detection system is cost. But factors beyond mathematical models need to be considered, too, many of which 
the fully automated solutions will be unable to capture. The various scenarios mentioned in the previous sections make a 
fully automated solution difficult to achieve in the real world.  

An anomaly detection model’s inability to incorporate human sentiments is another factor that makes many of the current 
automated solutions fail. While the models and data would accurately detect an anomaly, and that anomaly would be 
considered legitimate from all aspects — including legal — there could be situations where everything needs to be 
overridden and human judgement and compassion considered instead. For example, if a financial crisis occurs in a 
country and it leads to an anomalous situation like drastic regulatory policy changes impacting consumer behaviors, then 
the broader circumstances of that crisis must be considered and, in many cases, must override what a detection model 
provides as an insight.

Why a hybrid approach works best
Many approaches successfully reduce the number of false positives, significantly changing the way anomaly detection 
models are trained. Traditional methods base the model on a “bad” definition, meaning identified and/or known cases of 

fraud, non-compliance with the Bank Secrecy Act and other disruptive transactions. 

Newer approaches train the model on a targeted definition of known “good” behaviors. The premise is that the known/
identified “bad” population used for model training is based on a smaller sample size of the overall population — less 
than 5% (if not, then there is a larger issue with the models) — while the identified “good” population is greater than 95%. 
The “good” provides a more comprehensive population size on which to train the model, as well as a way to capture 
seasonality, maturity level of the portfolio, consumer behavior, and both macroeconomic impacts and the impact of 
previous management actions.



5

© 2020 NTT DATA, Inc.  All rights reserved.

But trying to devise a solution that considers all factors 
may result in a system too complex and cost prohibitive 
to implement. It may also be very difficult to implement 
operationally. The best method is to adopt a hybrid approach 
that uses anomaly detection methods to get the initial subset 
of data, and then successfully filters out false positives to 
derive a subset of the initial list that can be used for 
further evaluation. 

The hybrid approach starts by running the entire dataset 
through rule-based filtering. The results are fed into an 
anomaly detection engine, which reduces the dataset into 
a smaller subset of transactions. That filtered list is fed 
into an anomaly detection filter — a platform based on an 
analytical model capable of identifying false positives and 
other anomalies using the various methods described in 
the sections above. This step reduces the dataset into an 
even smaller subset of transaction candidates for additional 
manual evaluation. A team processes this smaller subset 
manually, verifying false positives using methods such as 
document verification, as well as KYC information from 
existing customers. Customers may also be contacted directly for additional information and verification. This step results 
in a smaller number of transactions, some of which could be real anomalies that will need further investigation.

One additional filter worth mentioning is a machine learning-based filter, which can be effective over a period of time. For 
example, an anomaly previously detected for a customer and tagged as either a false positive or a pattern recognized 
in a specific region can be fed into the filter, which will remove some of the transactions from the list. This new learning, 
which is based on identified patterns in customer regions, for example, can be used effectively to reduce the datasets 
that must be manually investigated.

The core components and features of a robust hybrid anomaly detection solution include: 

1. Data sets. Regardless of the approach used, historical data is used to derive insights as well as group data and 
identify anomalies.

2. Analytical models. Collected historical data is put through analytical models using one of the algorithms that 
form part of the analytical engine. 

3. Supervised and unsupervised learning. The anomaly detection engine learns based on patterns, 
variations and rules to identify anomalies. Similarly, the anomaly detection engine also needs to learn from data 
without being taught (unsupervised learning).

4. Data extraction and transformation utilities. The anomaly detection engine should be able to extract 
and transform both structured and unstructured data. Utilities can help clean up the data, ensuring that the 
predictions provide accurate insights and not skewed results.

5. Machine learning system. The learnings from previous anomalies and patterns are fed into a machine 
learning system that provides further filtering.

6. Manual processing system. A manual system processes the final filtered data, which includes potential 
anomaly candidates that require detailed investigations. Investigators will employ various methods, such as 
validating data and KYC information, reviewing publicly available data and sanctions, and contacting customers 
directly to gather additional details.
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When banks adopt a hybrid approach, transactions are fed into the anomaly detection system via file-, real time- or API-based 
integration. The rule-based system conducts the initial filtering, investigating straightforward cases like transactions greater than a 
certain amount set by the bank (limits). Transactions that are part of sanction list accounts can be flagged easily using this method.

The filtered list is then fed into an anomaly detection system that uses analytical models and previous datasets to further filter the list. 
The results include any potentially real anomalies that need additional investigation. This final list is passed on to the manual processing 
team (also known as the business process outsourcing team), who investigates cases by accessing customer details, a KYC database 
and other trusted sources to gain more insight into the customer transaction. If required, customers may be contacted directly. The 
knowledge gained from each transaction is fed back into the machine learning-based system, which continues to “learn” over time.

The advantage to this approach is scalability, based on business growth. More regions, business units and transactions can be added, 
and the system scales to meet the demand. This type of system can also be built incrementally, starting with a rule-based component 
and then later plugging in the analytical component, to lower the initial investment required.

Conclusion
Although in theory a fully automated anomaly detection system is possible, it may not be a feasible option for financial 
institutions — especially as business grows. It is increasingly difficult and cost prohibitive to identify and investigate 
millions of transactions a day while weeding out false positives. 

A hybrid model that combines artificial intelligence, machine learning and human intelligence is far more effective. 
Implementing a hybrid approach mitigates risk while making anomaly detection commercially viable. It allows financial 
institutions to employ a variety of detection methods, depending on the situation, and offer enhanced protection in an 
increasingly complex industry.

6
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